Mathematical Description of an Extensive-Form Game with Perfect Information

 $\Gamma = (I, K, P, C, u)$, where:

- 1. I is the set of players (finite by assumption); I={1,2,...n};
- 2. K is the game-tree, i.e., the structure of the decision process: a set of ordered nodes without a curl, where
 - a. x_1 represents the initial node;
 - b. X is the set of non-terminal nodes;
 - c. Z is the set of terminal nodes;
 - d. IP (Immediate Predecessor) is a function on $X \cup Z$ with IP: $X \cup Z \rightarrow X \cup \phi$ and IP(x)= ϕ iff x= x₁;
 - e. IF (Immediate Followers) is a correspondence with IF: $X \rightarrow X \cup Z$ and IP(x)={x' \in X \cup Z: IP(x')=x};
- 3. P is a partition of X that assigns each node to a player, with P: X \rightarrow I and Xⁱ={x \in X: P(x)=i}, X=X¹ $\cup ... \cup X^{n}$;
- 4. C is a family of sets $C = \{C_x\}_{x \in X}$, where C_x is the set of actions available to player P(x) at x;
- 5. u_i is agent i's utility function, i.e., $u_i: Z \rightarrow R$

Remarks:

- 1. For consistency, there has to be a one-to-one identification between IF(x) and C_x;
- 2. A play of the game is a sequence of nodes starting at the initial node and finishing at a particular terminal node: $x_1, x_2, ..., x_k = z_t$, with $x_1 = IP^{k-1}(z_t) = IP(IP(...,IP(z_t)))$

Mathematical Description of an Extensive-Form Game with Imperfect Information

 $\Gamma = ((I,N), K, P, B, C, p, u)$, where:

- 1. $P = \{ X^1, ..., X^n, X^N \}$ and $X^N = \{x_1\};$
- 2. $B=(B_1,...,B_n)$, where B_i is an information sets for player I, a partition of X^i (the set of nodes belonging to i); b_i is an element of B_i
- 3. p is the probability distribution over C_{x1} (represents how Nature decides between its actions);

Remarks:

- 1. If x, $x \in b_i$, player I cannot distinguish between the two nodes;
- 2. If x, x' \in b_i, then C_x= C_{x'}. It follows that, what we actually have is $\{C_b\}_{b \in B}$;
- u_i, agent i's utility function, has to be Von Neuman-Morgenstern, i.e.,
 u_i: L(Z) → Rsince now agents compare probability distributions over the terminal nodes when deciding which strategy to use.