Mathematical Description of an Extensive-Form Game with Perfect Information

$\Gamma=(\mathrm{I}, \mathrm{K}, \mathrm{P}, \mathrm{C}, \mathrm{u})$, where:

1. I is the set of players (finite by assumption); $\mathrm{I}=\{1,2, \ldots \mathrm{n}\}$;
2. K is the game-tree, i.e., the structure of the decision process: a set of ordered nodes without a curl, where
a. x_{1} represents the initial node;
b. X is the set of non-terminal nodes;
c. Z is the set of terminal nodes;
d. IP (Immediate Predecessor) is a function on $X \cup Z$ with IP: $X \cup Z \rightarrow X \cup \emptyset$ and $\operatorname{IP}(x)=\phi$ iff $x=x_{1}$;
e. IF (Immediate Followers) is a correspondence with IF: $X \rightarrow X \cup Z$ and $\operatorname{IP}(x)=\left\{x^{\prime} \in X \cup Z: \operatorname{IP}\left(x^{\prime}\right)=x\right\}$;
3. P is a partition of X that assigns each node to a player, with $P: X \rightarrow I$ and $X^{i}=\{x \in$ $X: P(x)=i\}, X=X^{1} \cup \ldots \cup X^{n}$;
4. C is a family of sets $C=\left\{C_{x}\right\}_{x \in X}$, where C_{x} is the set of actions available to player $\mathrm{P}(\mathrm{x})$ at x ;
5. u_{i} is agent i 's utility function, i.e., $u_{i}: Z \rightarrow R$

Remarks:

1. For consistency, there has to be a one-to-one identification between IF (x) and C_{x};
2. A play of the game is a sequence of nodes starting at the initial node and finishing at a particular terminal node: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\left(=\mathrm{Z}_{\mathrm{t}}\right)$, with $\mathrm{x}_{1}=$ $\operatorname{IP}^{\mathrm{k}-1}\left(\mathrm{z}_{\mathrm{t}}\right)=\operatorname{IP}\left(\operatorname{IP}\left(\ldots . \operatorname{IP}\left(\mathrm{z}_{\mathrm{t}}\right)\right)\right)$

Mathematical Description of an Extensive-Form Game with Imperfect Information

$\Gamma=((\mathrm{I}, \mathrm{N}), \mathrm{K}, \mathrm{P}, \mathrm{B}, \mathrm{C}, \mathrm{p}, \mathrm{u})$, where:

1. $\mathrm{P}=\left\{\mathrm{X}^{1}, \ldots, \mathrm{X}^{\mathrm{n}}, \mathrm{X}^{\mathrm{N}}\right\}$ and $\mathrm{X}^{\mathrm{N}}=\left\{\mathrm{X}_{1}\right\}$;
2. $B=\left(B_{1}, \ldots B_{n}\right)$, where B_{i} is an information sets for player I, a partition of X^{i} (the set of nodes belonging to i); b_{i} is an element of B_{i}
3. p is the probability distribution over $\mathrm{C}_{\mathrm{x} 1}$ (represents how Nature decides between its actions);

Remarks:

1. If $x, x^{\prime} \in b_{i}$, player I cannot distinguish between the two nodes;
2. If $x, x^{\prime} \in b_{i}$, then $C_{x}=C_{x^{\prime}}$. It follows that, what we actually have is $\left\{C_{b}\right\}_{b \in B}$;
3. u_{i}, agent i's utility function, has to be Von Neuman-Morgenstern, i.e., $\mathrm{u}_{\mathrm{i}}: \mathcal{L}(\mathrm{Z}) \rightarrow$ Rsince now agents compare probability distributions over the terminal nodes when deciding which strategy to use.
